- MENU 2010 -

Properties of the $\Lambda(1405)$ Measured at CLAS

Kei Moriya Reinhard Schumacher

Outline

1 Introduction

- What is the Λ(1405)?
- Theory of the Λ(1405)

2 CLAS Analysis

- Selecting Decay Channels of Interest
- Removing $\Sigma^0(1385)$ and K^* Background
- Fit to Extract Λ(1405) Lineshape

3 Results

- Λ(1405) Lineshape Results
- $\Lambda(1405)$ Cross Section Results
- Λ(1520) Cross Section Results
- $\Lambda(1405), \Lambda(1520), \Sigma^0(1385)$ Cross Section Comparison

CONCLUSION

What is the $\Lambda(1405)$?

- **** resonance just below $N\overline{K}$ threshold
- $J^P = \frac{1}{2}^-$ (experimentally unconfirmed)
- decays exclusively to $(\Sigma\pi)^0$
- past experiments: the lineshape (= invariant $\Sigma \pi$ mass distribution) is distorted from a simple Breit-Wigner form
- what is the nature of this distorted lineshape?
 - "normal" qqq-baryon resonance
 - dynamically generated resonance in unitary coupled channel approach

Difference in Lineshape

$$\frac{d\sigma(\pi^{+}\Sigma^{-})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{-}\Sigma^{+})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- difference in lineshapes is due to interference of isospin terms in calculation $(\mathrm{T}^{(\mathrm{I})}$ represents amplitude of isospin I term)
- distortion of the lineshape is connected to underlying QCD amplitudes that generate the $\Lambda(1405)$
- this analysis will measure all three $\Sigma\pi$ channels

- CLAS@Jefferson Lab
- liquid LH₂ target
- $\gamma + p \rightarrow K^+ + \Lambda(1405)$

- CLAS@Jefferson Lab
- liquid LH₂ target
- $\gamma + p \rightarrow K^+ + \Lambda(1405)$
- real unpolarized photon beam
- $E_\gamma < 3.84~{
 m GeV}$
- $\bullet~\sim 20B$ total triggers

- CLAS@Jefferson Lab
- liquid LH₂ target
- $\gamma + p \rightarrow K^+ + \Lambda(1405)$
- real unpolarized photon beam
- $E_{\gamma} < 3.84~{
 m GeV}$
- $\bullet~\sim 20B$ total triggers
- measure charged particle
 - p with drift chambers

- CLAS@Jefferson Lab
- liquid LH₂ target
- $\gamma + p \rightarrow K^+ + \Lambda(1405)$
- real unpolarized photon beam
- $E_{\gamma} < 3.84~{
 m GeV}$
- $\bullet~\sim 20B$ total triggers
- measure charged particle
 - p with drift chambers
 - timing with TOF walls

K. Moriya (CMU)

Reaction of Interest

detected particles	${\cal K}^+, { m p}, \pi^-$			K^{+},π^{+},π^{-}		
missing particle(s)	(π^{0})		(π^0,γ)	(n)		
intermediate hyperon	٨	Σ+	$\Sigma^0(ightarrow\gamma\Lambda)$	Σ+	Σ^{-}	
kinematic fit	yes		no	yes		
reaction	Σ (1385) Σ (1385), Λ (1405), Λ (1520)					

K. Moriya (CMU)

Reaction of Interest

detected particles	K^+ ,p, π^-			K^+,π^+,π^-		
missing particle(s)	(π^{0})		(π^0,γ)	(n)		
intermediate hyperon	٨	Σ^+	$\Sigma^0(ightarrow\gamma\Lambda)$	Σ+	Σ-	
kinematic fit	yes		no	yes		
reaction	Σ(1385)	Σ(1385), Λ(1405), Λ(1520)				

K. Moriya (CMU)

Background

- Σ⁰(1385) → Σπ
 BR(Λπ⁰) = 88% ≫ BR(Σ[±]π[∓]) = 6% each
 ⇒ measure in Λπ⁰, scale down to each Σπ channel
 influence should be small due to branching ratio
 K*Σ
 - broad width will overlap with signal
 - subtract off incoherently

Background

- Σ⁰(1385) → Σπ
 BR(Λπ⁰) = 88% ≫ BR(Σ[±]π[∓]) = 6% each
 ⇒ measure in Λπ⁰, scale down to each Σπ channel
 influence should be small due to branching ratio
 K*Σ
 - broad width will overlap with signal
 - subtract off incoherently

Background

- Σ⁰(1385) → Σπ
 BR(Λπ⁰) = 88% ≫ BR(Σ[±]π[∓]) = 6% each
 ⇒ measure in Λπ⁰, scale down to each Σπ channel
 influence should be small due to branching ratio
 K*Σ
 - broad width will overlap with signal
 - subtract off incoherently

example: 1 energy and angle bin out of ~ 150

- $\Sigma(1385)$ is fit with templates of MC of
 - Σ(1385) (non-relativistic Breit-Wigner)
 - *K**+Λ MC
- very good fit results

example: 1 energy and angle bin out of ~ 150

- Σ(1385) is fit with templates of MC of
 - Σ(1385) (non-relativistic Breit-Wigner)
 - *K**+Λ MC
- very good fit results

example: 1 energy and angle bin out of ~ 150

- Σ(1385) is fit with templates of MC of
 - Σ(1385) (non-relativistic Breit-Wigner)
 - *K**+Λ MC
- very good fit results

example: 1 energy and angle bin out of ~ 150

- $\Sigma(1385)$ is fit with templates of MC of
 - Σ(1385) (non-relativistic Breit-Wigner)
 - *K**+Λ MC
- very good fit results

$\Sigma(1385)$ Cross Section From $\Lambda \pi^0$ Channel

- scale by branching ratio and acceptance into each $\Sigma\pi$ channel
- BR($\Lambda\pi$) = 89% \gg BR($\Sigma\pi$) = 11%
- $\Sigma^0 \pi^0$ channel does not have $\Sigma(1385)$

- subtract off Σ(1385), Λ(1520), Κ^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), Κ^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), Κ^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), K^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), K^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), Κ^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), Κ^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

- subtract off Σ(1385), Λ(1520), K^{*0}
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

Results of Lineshape

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, narrow than $\Sigma^-\pi^+$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

K. Moriya (CMU)

Results of Lineshape

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, narrow than $\Sigma^-\pi^+$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

K. Moriya (CMU)

Results of Lineshape

- lineshapes do appear different for each $\Sigma\pi$ decay mode
- $\Sigma^+\pi^-$ decay mode has peak at highest mass, narrow than $\Sigma^-\pi^+$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

K. Moriya (CMU)

Theory Prediction From Chiral Unitary Approach

J. C. Nacher et al., Nucl. Phys. B455, 55

- $\Sigma^{-}\pi^{+}$ decay mode peaks at highest mass, most narrow
- difference in lineshapes is due to interference of isospin terms in calculation ($T^{(I)}$ represents amplitude of isospin I term)
- we have started trying fits to the resonance amplitudes

Isospin Decomposition

 Separate {Σ⁺π⁻, Σ⁰π⁰, Σ⁻π⁺} into I=0 and I=1 <u>amplitude contributions</u>

$$\frac{d\sigma}{dm} = \frac{(\hbar c)^2}{16\pi} \frac{\alpha}{W^2} \frac{p_f(m)}{p_i(W)} | (I_{3\Sigma}, I_{3\pi} \mid 0, 0)T^{(0)} + (I_{3\Sigma}, I_{3\pi} \mid 1, 0)T^{(1)} + \underbrace{(I_{3\Sigma}, I_{3\pi} \mid 2, 0)T^{(2)}}_{(2\pi)} |^2$$

$$T^{(0,1,2)}(m) = g^{(0,1,2)} \frac{m\Gamma_0 \frac{\rho}{\rho_0}}{(m_0^2 - m^2) - im\Gamma(q)} \qquad \rho = 2q / m \qquad \Sigma \pi \text{ phase space factor}$$

$$\Gamma(m) = \Gamma_0 \frac{q(m)}{q_0} \qquad \text{Mass-dependent width for relativistic Breit Wigner}$$

$\Lambda(1405)$ Differential Cross Section Results

- lines are fits with 6rd order Legendre polynomials
- clear turnover of $\Sigma^+\pi^-$ channel at forward angles
- theory: contact term only, no angular dependence for interference
- experiment: able to see strong isospin AND angular interference effect

K. Moriya (CMU

$\Lambda(1405)$ Differential Cross Section Results

- lines are fits with 6rd order Legendre polynomials
- clear turnover of $\Sigma^+\pi^-$ channel at forward angles
- theory: contact term only, no angular dependence for interference
- experiment: able to see strong isospin AND angular interference effect

K. Moriya (CMU

$\Lambda(1520)$ Differential Cross Section Comparison

- binning is in $t t_{\min}$
- good agreement with $\mathrm{p} {\it K}^-$ channel from CLAS (unpublished)
 - data provided by de Vita et al. (INFN Genova)

K. Moriya (CMU

Comparison of $\Sigma(1385)/\Lambda(1405)/\Lambda(1520)$ Cross Sections

lines are fits with 5th order Legendre polynomials

K. Moriya (CMU)

Comparison of $\Sigma(1385)/\Lambda(1405)/\Lambda(1520)$ Cross Sections

lines are fits with 5th order Legendre polynomials

K. Moriya (CMU)

Conclusion

- difference in lineshapes observed
- difference in $d\sigma/dcos \theta_{\kappa^+}^{c.m.}$ behavior observed
- doing our own isospin decomposition of resonance amplitudes
- systematics under study

strong dynamical effects being observed for the $\Lambda(1405)$

hoping to finalize analysis soon

effect of kinematic fit on resolution

example in 1 bin:

- neutron combined with π^\pm reconstructs Σ^\pm
- project on each axis, select $\pm 2\sigma$, exclude other hyperon
- diagonal band (K^0 from $\pi^+\pi^-$) is also excluded

(without kinematic fit)

effect of kinematic fit on resolution

example in 1 bin:

- neutron combined with π^\pm reconstructs Σ^\pm
- project on each axis, select $\pm 2\sigma$, exclude other hyperon
- diagonal band (K^0 from $\pi^+\pi^-$) is also excluded

(with kinematic fit)

- subtract off $\Sigma(1385)$, $\Lambda(1520)$, $K^+\Sigma^-\pi^+$ phase space
- assigned the remaining contribution to the $\Lambda(1405)$

K. Moriya (CMU

Comparison of Lineshapes for Two Σ^+ Channels

Comparison of Lineshapes for Two Σ^+ Channels

Comparison of Lineshapes for Two Σ^+ Channels

$\Lambda(1405)$ Comparison of Two Σ^+ Channels

$\Lambda(1405)$ Comparison of Two Σ^+ Channels

$\Lambda(1405)$ Comparison of Two Σ^+ Channels

$\Lambda(1520)$ Comparison of Two Σ^+ Channels

$\Lambda(1520)$ Comparison of Two Σ^+ Channels

$\Lambda(1520)$ Comparison of Two Σ^+ Channels

